14,937 research outputs found

    Massive MU-MIMO Downlink TDD Systems with Linear Precoding and Downlink Pilots

    Full text link
    We consider a massive MU-MIMO downlink time-division duplex system where a base station (BS) equipped with many antennas serves several single-antenna users in the same time-frequency resource. We assume that the BS uses linear precoding for the transmission. To reliably decode the signals transmitted from the BS, each user should have an estimate of its channel. In this work, we consider an efficient channel estimation scheme to acquire CSI at each user, called beamforming training scheme. With the beamforming training scheme, the BS precodes the pilot sequences and forwards to all users. Then, based on the received pilots, each user uses minimum mean-square error channel estimation to estimate the effective channel gains. The channel estimation overhead of this scheme does not depend on the number of BS antennas, and is only proportional to the number of users. We then derive a lower bound on the capacity for maximum-ratio transmission and zero-forcing precoding techniques which enables us to evaluate the spectral efficiency taking into account the spectral efficiency loss associated with the transmission of the downlink pilots. Comparing with previous work where each user uses only the statistical channel properties to decode the transmitted signals, we see that the proposed beamforming training scheme is preferable for moderate and low-mobility environments.Comment: Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, Illinois, Oct. 201

    Aspects of Favorable Propagation in Massive MIMO

    Full text link
    Favorable propagation, defined as mutual orthogonality among the vector-valued channels to the terminals, is one of the key properties of the radio channel that is exploited in Massive MIMO. However, there has been little work that studies this topic in detail. In this paper, we first show that favorable propagation offers the most desirable scenario in terms of maximizing the sum-capacity. One useful proxy for whether propagation is favorable or not is the channel condition number. However, this proxy is not good for the case where the norms of the channel vectors may not be equal. For this case, to evaluate how favorable the propagation offered by the channel is, we propose a ``distance from favorable propagation'' measure, which is the gap between the sum-capacity and the maximum capacity obtained under favorable propagation. Secondly, we examine how favorable the channels can be for two extreme scenarios: i.i.d. Rayleigh fading and uniform random line-of-sight (UR-LoS). Both environments offer (nearly) favorable propagation. Furthermore, to analyze the UR-LoS model, we propose an urns-and-balls model. This model is simple and explains the singular value spread characteristic of the UR-LoS model well

    Massive MIMO for Next Generation Wireless Systems

    Full text link
    Multi-user Multiple-Input Multiple-Output (MIMO) offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned with roughly equal numbers of service-antennas and terminals and frequency division duplex operation, is not a scalable technology. Massive MIMO (also known as "Large-Scale Antenna Systems", "Very Large MIMO", "Hyper MIMO", "Full-Dimension MIMO" & "ARGOS") makes a clean break with current practice through the use of a large excess of service-antennas over active terminals and time division duplex operation. Extra antennas help by focusing energy into ever-smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include the extensive use of inexpensive low-power components, reduced latency, simplification of the media access control (MAC) layer, and robustness to intentional jamming. The anticipated throughput depend on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly-joined terminals, the exploitation of extra degrees of freedom provided by the excess of service-antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This paper presents an overview of the massive MIMO concept and contemporary research.Comment: Final manuscript, to appear in IEEE Communications Magazin

    Tunable effective g-factor in InAs nanowire quantum dots

    Full text link
    We report tunneling spectroscopy measurements of the Zeeman spin splitting in InAs few-electron quantum dots. The dots are formed between two InP barriers in InAs nanowires with a wurtzite crystal structure grown by chemical beam epitaxy. The values of the electron g-factors of the first few electrons entering the dot are found to strongly depend on dot size and range from close to the InAs bulk value in large dots |g^*|=13 down to |g^*|=2.3 for the smallest dots. These findings are discussed in view of a simple model.Comment: 4 pages, 3 figure
    • …
    corecore